Production of Sb(IV) Chloro Complex by Flash Photolysis of the Corresponding Sb(III) and Sb(V) Complexes in CH₃CN and CHCl₃

Nobuyoshi Shinohara* and Masaaki Ohshima

Department of Chemistry, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027

(Received January 31, 2000)

 $[SbCl_6]^{2-}$ was formed in the flash photolysis of $[SbCl_6]^{3-}$ or $[SbCl_6]^{-}$ in both solutions of CH_3CN and $CHCl_3$ in the presence of an excess of chloride. $[SbCl_6]^{2-}$ had absorption maxima at 293, 328, and 390 nm in CH_3CN . A similar absorption spectrum of $[SbCl_6]^{2-}$ was also obtained in $CHCl_3$. The lifetime of $[SbCl_6]^{2-}$ was much shorter in $CHCl_3$ than in CH_3CN . $[SbCl_6]^{-}$ was easily reduced to $[SbCl_6]^{3-}$ upon continuous UV-irradiation in CH_3CN as well as in $CHCl_3$. On the other hand, $[SbCl_6]^{3-}$ was oxidized to $[SbCl_6]^{-}$ in $CHCl_3$ in the presence of oxygen, but was not in CH_3CN . The spectrum and the decay rate of $[SbCl_6]^{2-}$ were not essentially affected by oxygen in both solutions of CH_3CN and $CHCl_3$.

Generally, main-group metals exist in stable oxidation states in which the ground state of the electron configuration is either s² or s⁰. The absorption spectra of the complexes of s² metal ions were characterized by sp bands at longer wavelength and MLCT absorption at shorter wavelength, and those of s⁰ metal ions were characterized by LMCT bands.¹ The photoredox reactions of the main-group metal complexes with the electron configuration s² (Tl(I),^{2,3} Sn(II),⁴⁻⁷ Pb(II),⁷ Sb(III), ^{2,7,8} Bi(III), ^{7,9} Te(IV), ^{2,10} etc.) and s^0 (Tl(III), ² Sn-(IV), 5.6,11 Pb(IV), 2,11 Sb(V)8 etc.) were studied. The redox reactions of such complexes involve either a two-electron transfer with the direct formation of a stable oxidation state, or successive one-electron transfer steps. In the latter case, an unstable intermediate with an s¹ electron configuration can be expected to be produced. However, little is known about the chemical species of the s¹ configuration. Flash photolysis is very useful in the generation and characterization of metal ions in unusual valency states. Transient species, such as Pb-(III), 12 Sn(III), 5,6 and Pt(III), 13 were detected by using a flash photolysis technique.

Vogler and Paukner⁸ reported that [SbCl₆]³⁻ was oxidized to [SbCl₆]⁻ with the production of peroxide in airsaturated CHCl₃ solutions, and that [SbCl₆]⁻ was reduced to [SbCl₆]³⁻ with the production of chlorine in deaerated CHCl₃ solutions. However, it is not yet known whether the photoredox occurs by two subsequent one-electron transfer processes or by a two-electron transfer in a concerted fashion. Our principal objective in this study was to clarify the formation and its characteristics of Sb(IV) in the photoredox reactions of Sb(III) and Sb(V) in CHCl₃ and CH₃CN.

Experimental

Materials. The compounds $[N(C_2H_5)_4][SbCl_4]$ and $[N(C_2H_5)_4][SbCl_6]$ were prepared according to published procedures. ^{14,15} CHCl₃ and CH₃CN were of spectro grade, and all other chemicals used were of chemically pure grade. Deaeration of

solutions was carried out by bubbling with pure nitrogen. Flash photolysis studies of Sb(III) and Sb(V) were carried out in CH₃Cl and CH₃CN (hereafter coordinated chloride ions are neglected, except for the case in which the number of the coordinated chloride ions is changed by reaction). When $[N(C_2H_5)_4][SbCl_4]$ and $[N(C_2H_5)_4][SbCl_6]$ are dissolved in CHCl₃ and CH₃CN in the presence of a large excess of chloride ($[Cl^-] > 5 \times 10^{-2}$ M) (M = mol dm⁻³), the anions exist as $[SbCl_6]^3$ and $[SbCl_6]^-$, respectively. All experiments were carried out in solutions containing 0.1 M $N(C_2H_5)_4$ Cl.

Methods. The absorption spectra were recorded with a Shimadzu UV-2100 spectorophotometer. Transient absorption spectra were measured by using the flash photolysis apparatus described previously. The main Xe flash lamps dissipated 450 J max. at 15 kV with a flash duration of 10 µs. A nanosecond laser flash photolysis apparatus was also used, which was equipped with Hoya Continuum Nd: YAG laser (1064 nm, 10 Hz, 450 mJ) with a width of about 15 ns. 266 nm light was used in the excitation of laser photolysis. The detection system utilized a 150 W Xe lamp, a monochromator, a photomultiplier, and associated optical components. The flash photolysis apparatuses were equipped with a multichannelanalyzer (UNISOKU USP-500) of which the limit of time resolution was 10 µs. The signals were digitized with a Tektronix TDS 320 oscilloscope and analyzed with a computer. A 500 W Xe lamp was used for continuous irradiation with filters. Peroxide was determined by the peroxide test of Merck (merckoquant 10081-1M), which was used in a similar reaction system.8

Results and Discussion

[SbCl₆]³⁻ in CH₃CN. Halide complexes of s² metal ions are characterized by metal-centered sp and MLCT transitions. Hollow The absorption spectrum of [SbCl₆]³⁻ in CH₃CN containing 0.1 M N(C₂H₅)₄Cl has absorption maxima at 308 nm ($^1S_0 \rightarrow ^3P_1$, $\varepsilon = 1.58 \times 10^3$ M⁻¹ cm⁻¹), 267 nm ($^1S_0 \rightarrow ^3P_2$, $\varepsilon = 5.10 \times 10^3$ M⁻¹ cm⁻¹), and 234 nm ($^1S_0 \rightarrow ^1P_1$, $\varepsilon = 2.88 \times 10^4$ M⁻¹ cm⁻¹) (Fig. 1).

It is known that in deaerated CHCl₃ solutions Sb(III) is not oxidized to Sb(V) upon continuous irradiation at 263 nm.⁸ In our study of CH₃CN, Sb(III) was found not to also be

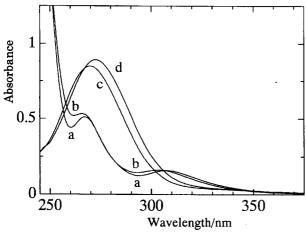


Fig. 1. Electronic absorption spectra of $[SbCl_6]^3$ and $[SbCl_6]^-$ complexes in CH_3CN and $CHCl_3$ in the presence of 0.1 M $N(C_2H_5)_4Cl$. a: 1.00×10^{-4} M $[SbCl_6]^3$ in CH_3CN , b: 1.00×10^{-4} M $[SbCl_6]^3$ in $CHCl_3$, c: 1.00×10^{-4} M $[SbCl_6]^-$ in CH_3CN , and d: 1.00×10^{-4} M $[SbCl_6]^-$ in $CHCl_3$.

oxidized to Sb(V) upon irradiation at $\lambda > 250$ nm. However, a transient absorption spectrum was obtained in the flash photolysis of Sb(III) in deaerated CH₃CN solutions (Fig. 2A). The spectra displayed intense bands at 293, 328, and 390. The shape and ratio of the optical densities are the same during disappearance at the absorption. Hence, this spectrum is caused by one species. The following reaction scheme may be used for interpretating the experimental results, where Sb-(III)* denotes excited state:

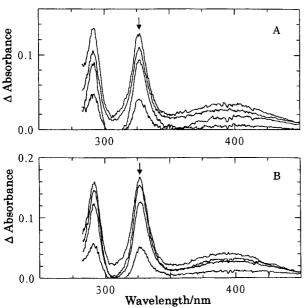


Fig. 2. Transient absorption spectra obtained in the flash photolysis of 5.0×10^{-5} M [SbCl₆]³⁻ CH₃CN solutions containing 0.1 M chloride. (A) measured at 500 μ s, 5 ms, 50 ms, and 500 ms after the flash in a deaerated solution, (B) measured at 500 μ s, 5 ms, 50 ms, and 500 ms after the flash in an O₂-saturated solution.

$$Sb(III) \xrightarrow{h\nu} Sb(III)^*, \tag{1}$$

$$Sb(III)^* + CH_3CN \longrightarrow Sb(IV) + \cdot CH_3CN^-,$$
 (2)

$$2Sb(IV) \longrightarrow Sb(III) + Sb(V), \tag{3}$$

$$\cdot CH_3CN^- \longrightarrow decomposition product.$$
 (4)

The Sb(III)* formed by light absorption (Eq. 1) undergoes electron transfer to give Sb(IV) and •CH₃CN⁻ (Eq. 2). The obtained transient absorption spectrum was attributed to Sb-(IV) and its decay obeyed a second-order kinetics with a k_3/ε value of 6.8×10^2 cm s⁻¹. Sb(V) was not detected upon continuous irradiation of Sb(III), as stated above. This observation may be interpreted in terms of consecutive reactions, in which the oxidation of Sb(III) to Sb(V) (Eqs. 2 and 3) and its subsequent photochemical reduction to Sb(III) take place. This explanation is supported by the fact that Sb(V) is easily photoreduced to Sb(III) (Fig. 3). The continuous irradiation of Sb(V) at > 250 nm in a deaerated CH₃CN solution was accompanied by spectral changes with isobestic points at 350 and 256 nm, except at the beginning of photolysis. The absorption maxima at 307 and 267 nm, which are attributed to Sb(III), appeared after prolonged irradiation. The mechanism for the reduction of Sb(V) will be discussed later. •CH₃CN⁻ will generate together with Sb(IV) (Eq. 2). Such a ·CH₃CN[−] was reported in the pulse-radiolysis of CH₃CN $(e_{ag}^- + CH_3CN \rightarrow \cdot CH_3CN^-)$. 18 $\cdot CH_3CN^-$ is very unstable, which decomposes according to Eq. 4 $(k_4 = 2 \times 10^6 \text{ s}^{-1}).^{19,20}$

Complexes of s² metal ions, such as Tl(I),^{3,21} Sn(II),^{22,23} and Sb(III),^{8,23} are well known to undergo photooxidation in the presence of oxygen,

$$M^{n+} + O_2 \longrightarrow M^{(n+2)+} + O_2^{2-}$$
 (5)

Upon continuous irradiation, Sb(III) is oxidized to Sb(V) along with the production of peroxide in air-saturated CHCl₃

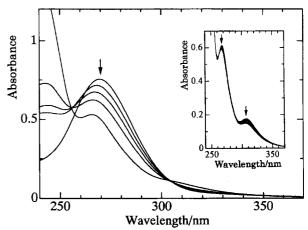


Fig. 3. Spectral changes during the photolysis of 1.0×10^{-4} M [SbCl₆]⁻ in deaerated CH₃CN solutions in the presence of 0.1 M chloride. Irradiation time: 0, 0.5, 1.0, 6.5, and 42 min at $\lambda > 250$ nm, 1-cm cell. The inset shows the spectral changes during the photolysis of 9.0×10^{-5} M [SbCl₆]³- containing 1.0×10^{-5} M [Sb(Cl)₆]⁻ in an O₂-saturated solution. Irradiation time: 0, 2, 4, 6, and 8 min at $\lambda > 250$ nm.

solutions,⁸ on the other hand, it did not occur in CH_3CN , although peroxide was produced. In the flash photolysis of Sb(III) in O_2 -saturated solutions, a transient spectrum, which was very similar to that obtained in deaerated solution, was observed (Fig. 2B). These results obtained in the O_2 -saturated solutions can be explained by the following reactions:

$$Sb(III)^* + O_2 \longrightarrow Sb(IV) + O_2^-,$$
 (6)

$$Sb(III) + O_2^- \longrightarrow Sb(IV) + O_2^{2-}. \tag{7}$$

It has been reported that $Sb(III)^*$ is quenched by oxygen in $CHCl_3$ with a rate constant of $2.7 \times 10^9~M^{-1}~s^{-1}.^8~Sb-(III)^*$ would be also quenched by oxygen in CH_3CN^{24} as well as in $CHCl_3$; the resulting O_2^- reacts with Sb(III) to give Sb(IV) and peroxide. The decay rate constant of Sb-(IV) was the same as that obtained in deaerated solutions within the experimental error. No production of Sb-(IV) in the photolysis of Sb(III) in O_2 -saturated solutions can be attributed to the subsequent photochemical reduction of Sb-(IV) formed by Eqs.~6, 7, and 3 to Sb(III) as well as in the photolysis of deaerated Sb(III) solutions. This is supported by the fact that Sb(V) is easily reduced to Sb(III) in the photolysis of an O_2 -saturated Sb(III) solution containing a small amount of Sb(V) (Fig. 3, see inset).

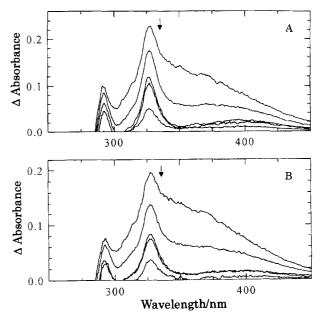
Complexes of s⁰ metal ions are $[SbCl_6]^-$ in CH₃CN. characterized by low-energy LMCT states. In accordance with the nature of such an excited state, the metal ion undergoes reduction, and the ligand does an oxidation.^{2,5} The absorption spectrum of Sb(V) in CH₃CN in the presence of 0.1 M N(C₂H₅)₄Cl has an absorption maximum at 272 nm (LMCT transition, $\varepsilon = 8.34 \times 10^3 \text{ M}^{-1} \text{ cm}^{-1}$) (Fig. 1). In the flash photolysis of Sb(V) in deaerated CH₃CN solutions, a transient absorption spectrum, which had absorption maxima at 293 and 328 nm and a shoulder at ca. 345 nm, was obtained (Fig. 4A). The absorption band at ca. 345 nm completely disappeared within 5 ms after the flash, and the remaining spectrum was identical with that obtained in the photolysis of Sb(III) solutions. The spectrum obtained by deducting the spectrum at 50 µs from that at 5 ms displayed an absorption maximum at 345 nm, which was attributed to radical anion ·Cl₂⁻. The absorption maximum of ·Cl₂⁻ in CH₃CN only slightly shift to the longer wavelength side than that in aqueous solution $(\lambda_{\text{max}} = 340 \text{ nm}).^{27-29}$ Thus, the short-lived and the longer lived intermediates were assigned to be radical anion •Cl₂⁻ and Sb(IV), respectively: These transient species will be produced by the following reactions:

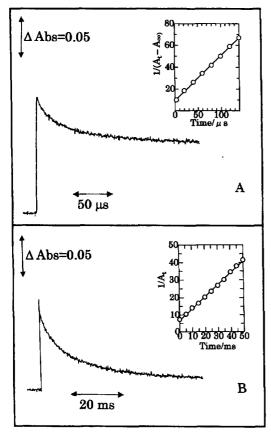
$$[SbCl6]^- \xrightarrow{h\nu} [SbCl5]^- + \cdot Cl, \tag{8}$$

$$[SbCl5]^- + Cl^- \longrightarrow [SbCl6]^{2-}, \tag{9}$$

$$\cdot \text{Cl} + \text{Cl}^- \longrightarrow \cdot \text{Cl}_2^-. \tag{10}$$

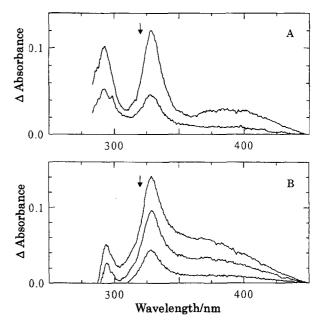
The LMCT excitation of Sb(V) gives $[SbCl_5]^-$ and ·Cl (Eq. 8). In the presence of a large excess of chloride, the resulting $[SbCl_5]^-$ and ·Cl react with Cl⁻ to give $[SbCl_6]^{2-}$ (Eq. 9) and ·Cl₂⁻ (Eq. 10), respectively. Typical oscillograms obtained by flashing a deaerated Sb(V) solution are




Fig. 4. Transient absorption spectra obtained in the flash photolysis of 5.0×10⁻⁵ M [SbCl₆] CH₃CN solutions containing 0.1 M chloride. (A) Measured at 50 μs, 500 μs, 5 ms, 50 ms, and 500 ms after the flash in a deaerated solution, (B) Measured at 50 μs, 500 μs, 5 ms, 50 ms, and 500 ms after the flash in an O₂-saturated solution.

given in Fig. 5. The first and second decays correspond to the disappearance of $\cdot \text{Cl}_2^-$ and Sb(IV), respectively. The decay of $\cdot \text{Cl}_2^-$ obeyed a second-order kinetics with k_{11}/ε value of 4.8×10^5 cm s⁻¹ (Fig. 5A, see inset):

$$\cdot \operatorname{Cl}_{2}^{-} + \cdot \operatorname{Cl}_{2}^{-} \longrightarrow \cdot \operatorname{Cl}_{3}^{-} + \operatorname{Cl}^{-}. \tag{11}$$


Taking $\varepsilon = 8800 \text{ M}^{-1} \text{ cm}^{-1}$ as the molar absorption coefficient of •Cl₂⁻ at 340 nm,²⁹ although it was measured in aqueous solution, the decay rate constant was estimated to be approximately $k_{11} = 3.7 \times 10^9 \text{ M}^{-1} \text{ s}^{-1}$. This value agrees fairly well with that obtained in aqueous solution.³⁰ The rate constant of the disproportionation of I_2 ($k = 2.8 \times 10^9$ M^{-1} s⁻¹)³¹ obtained in the flash photolysis of iodomercurate-(II) in CHCl₃ also agrees fairly well with the value in aqueous solution. 30 Sb(IV) also decayed with a second-order rate constant of $k_3/\varepsilon = 6.9 \times 10^2$ cm s⁻¹ (Fig. 5B, see inset). This value was the same as that obtained in the Sb(III) system within the experimental error. Assuming Eqs. 8, 9, and 10, the concentration of Sb(IV) must be equal to that of $\cdot Cl_2^-$. On this basis, the molar absorption coefficient of Sb(IV) is estimated to be roughly $\varepsilon = \text{ca.} 6500 \,\text{M}^{-1} \,\text{cm}^{-1}$ from Fig. 4, taking $\varepsilon = 8800 \,\mathrm{M}^{-1} \,\mathrm{cm}^{-1}$ for $\cdot \mathrm{Cl}_2^{-29}$ Thus, the decay rate constants of Sb(IV) formed in Sb(III) and Sb(V) solutions were estimated to be roughly ca. 4.2×10^6 and ca. 4.5×10^6 M^{-1} s⁻¹, respectively. The transient absorption spectrum (Fig. 4B) and the decay rates of •Cl₂⁻ and Sb(IV) were not influenced by oxygen.

[SbCl₆]³⁻ in CHCl₃. Sb(III) has sp transition bands at 304 nm ($\varepsilon = 1.59 \times 10^3 \text{ M}^{-1} \text{ cm}^{-1}$), 265 nm ($\varepsilon = 5.27 \times 10^3 \text{ M}^{-1} \text{ cm}^{-1}$), and 245 nm ($\varepsilon = 2.25 \times 10^4 \text{ M}^{-1} \text{ cm}^{-1}$) in CHCl₃ containing 0.1 M N(C₂H₅)₄Cl (Fig. 1). In deaerated

Oscilloscope traces showing changes in absorbance measured at 330 nm after the flash of deaerated 1.0×10^{-4} M [SbCl₆] CH₃CN solution in the presence of 0.1 M chloride. (A) First decay which shows the disappearance of ·Cl₂⁻. Inset: second order kinetic plot for the decay of \cdot Cl₂⁻. A_t is the total absorbance observed at a time t. A_{∞} is the absorbance after ·Cl₂⁻ disappeared. (B) Second decay which shows the disappearance of Sb(IV). Inset: secondorder kinetic plot for the decay of Sb(IV).

CHCl₃ solutions Sb(III) is not oxidized to Sb(V) upon continuous irradiation. On the other hand, in the flash photolysis of Sb(III) in deaerated CHCl3 solutions, an absorption spectrum of transient species was obtained (Fig. 6A). The spectrum had absorption maxima at 293, 327, and 390 nm, which were similar to those of Sb(IV) obtained in CH₃CN. The decay obeyed second-order kinetics with $k_3/\varepsilon = 3.0 \times 10^5$ cm s⁻¹. Assuming that the molar absorption coefficient of Sb(IV) in CHCl₃ is the same as that in CH₃CN, the rate constant of the disproportionation of Sb(IV) is estimated to be roughly 2.0×10^9 M⁻¹ s⁻¹. This assumption seems to be reasonable judging from the fact that the absorption maxima and their absorption coefficients of Sb(III) and Sb(V) in CH₃CN are approximately the same as those in CHCl₃, as shown in Fig. 1. The decay rate of Sb(IV) in CHCl3 is about four hundred and forty times larger than that in CH₃CN. Halocarbon solvents are relatively easily reduced,³² and are known to act as electron acceptors in the photooxidations of a great variety of transition-metal complexes.^{32–35} From these facts, the following reactions are suggested to explain the experimental

Transient absorption spectra obtained in the flash photolysis of [SbCl₆]³⁻ and [SbCl₆]⁻ complexes in CHCl₃ solutions containing 0.1 M chloride. (A) $[SbCl_6]^{3-}$ = 2.5×10^{-5} M, measured at 50 and 500 µs after the flash in a deaerated solution. (B) $[SbCl_6]^- = 1.0 \times 10^{-5}$ M, measured at 50, 100, and 500 µs after the flash in a deaerated solution.

results:

$$Sb(III) \longrightarrow Sb(III)^*,$$
 (1)

$$Sb(III)^* + CHCl_3 \longrightarrow Sb(IV) + \cdot CHCl_3^-.$$
 (12)

The excited state of Sb(III) formed by Eq. 1 appears to be quenched by CHCl₃ (Eq. 12) as well as by CH₃CN, and the resulting Sb(IV) disappears by Eq. 3 with a rate constant of ca. $2.0 \times 10^9 \,\mathrm{M}^{-1}\,\mathrm{s}^{-1}.^8$ The •CHCl₃⁻ is very unstable, which decomposes by the following mechanism:

$$\cdot \text{CHCl}_3^- \longrightarrow \cdot \text{CHCl}_2 + \text{Cl}^-, \tag{13}$$

$$\cdot$$
CHCl₂ + CHCl₃ \longrightarrow \cdot CCl₃ + CH₂Cl₂, (14)

$$2 \cdot CCl_3 \longrightarrow C_2Cl_6. \tag{15}$$

Reactions (13), (14), and (15) are reported to occur in the photolysis of various complexes, such as [Ru(bpy)₂Cl₂], Bu₄N₂[PtCl₆] etc. in CHCl₃. ^{36,37} The •CHCl₃⁻ radical eventually releases Cl⁻ to give a dichloromethyl radical, •CHCl₂ (Eq. 13). Further, the dichlorometyl radical, •CHCl₂, reacts with CHCl₃ to give trichloromethyl radicals (Eq. 14).³⁶⁻³⁹ The resulting •CCl₃ seems to disappear by Eq. 15. The rate constant of Eq. 15 is 3.7×10^8 M⁻¹ s⁻¹, although this value was measured in an aqueous solution.40

Sb(V) and peroxide are produced upon continuous irradiation of Sb(III) in CHCl₃ in the presence of oxygen, and the ratio of Sb(V) and peroxide is 1.02.8 It was found that Sb(IV) was formed in the flash photolysis of Sb(III) in CHCl₃ solutions in the presence of oxygen. It is suggested that the Sb(IV) and O_2^{2-} are formed according to the Eqs. 6 and 7 in CHCl₃ as well as in CH₃CN. The resulting Sb(IV) produced Sb(V) by Eq. 3. The result that the ratio of Sb(V) and peroxide is 1.02 is explained by this mechanism. Oxygen also had no influence on both the spectrum and the decay constant in CHCl₃.

[SbCl6] in CHCl₃. Sb(V) has absorption maxima at 273 nm ($\varepsilon = 8.93 \times 10^3 \text{ M}^{-1} \text{ cm}^{-1}$) in CHCl₃ in the presence of 0.1 M N(C₂H₅)₄Cl (Fig. 1). The transient absorption spectrum obtained in deaerated CHCl₃ solutions of Sb(V) has absorption maxima at 293 and 330, and a shoulder at ca. 345 nm (Fig. 6B). The decay rates of \cdot Cl₂⁻ and Sb(IV) were $k_{11}/\varepsilon = 5.1 \times 10^5$ cm s⁻¹ (roughly $k_{11} = \text{ca. } 4.5 \times 10^9$ M⁻¹ s⁻¹, assuming that the molar absorption coefficient for $\cdot \text{Cl}_2^-$ is 8800 M⁻¹ cm⁻¹) and $k_3/\varepsilon = 3.2 \times 10^5 \text{ cm s}^{-1}$ (roughy $k_3 = \text{ca. } 2.1 \times 10^9 \text{ M}^{-1} \text{ s}^{-1}$, assuming that the molar extinction coefficient for Sb(IV) is 6500 M⁻¹ cm⁻¹), respectively. The decay rate of •Cl₂⁻ obtained in CHCl₃ was close to that obtained in CH₃CN, and the spectra and the decays of ·Cl₂ and Sb(IV) were not affected by oxygen. The chlorine produced by Eq. 11 is consumed in a side reaction.8 The decay rate of Sb(IV) produced from Sb(V) was similar to that from Sb(III). The reaction scheme in the flash photolysis of Sb(V) in CHCl₃ would be given by Eqs. 8, 9, and 10 as well as those in CH₃CN.

Mixture of Sb(III) and Sb(V) Chloro Complexes in CHCl₃. In the flash photolysis of the mixture of Sb(III) and Sb(V) in deaerated CHCl₃ solutions, only one intermediate, which was attributed to Sb(IV), was detected (Fig. 7). An absorption maximum at ca. 345 nm, which appeared in the photolysis of Sb(V) solutions, was not observed. These results can be explained by the following reaction scheme:

$$Sb(III)^* + CHCl_3 \xrightarrow{h\nu} Sb(IV) + \cdot CHCl_3^-,$$
 (12)

$$\cdot \text{CHCl}_3^- + \text{Sb}(V) \longrightarrow \text{CHCl}_3 + \text{Sb}(IV),$$
 (16)

$$[SbCl6]^- \xrightarrow{h\nu} [SbCl5]^- + \cdot Cl,$$
 (8)

$$[SbCl5]^- + Cl^- \longrightarrow [SbCl6]^-,$$
 (9)

$$\cdot \text{Cl} + \text{Cl}^- \longrightarrow \cdot \text{Cl}_2^-. \tag{10}$$

$$\cdot \text{Cl}_2^- + \text{Sb}(\text{III}) \longrightarrow 2\text{Cl}^- + \text{Sb}(\text{IV}).$$
 (17)

The over-all reaction is given as

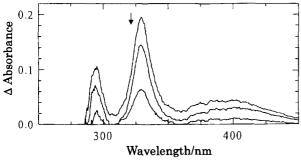


Fig. 7. Transient absorption spectra obtained in the flash photolysis of the mixture of 2.5×10^{-5} M [SbCl₆]³⁻ and 1.0×10^{-5} M [SbCl₆]⁻ CHCl₃ solutions containing 0.1 M chloride. Measured at 50, 100, and 500 μ s after the flash in a deaerated solution.

$$Sb(III) + Sb(V) \xrightarrow{h\nu} 2 Sb(IV).$$
 (18)

Because both Sb(III) and Sb(V) initially exist in this system, the reducing radical, \cdot CHCl₃⁻, and the oxidizing radical, \cdot Cl₂⁻, react with Sb(V) and Sb(III), respectively, to give Sb(IV) (Eqs. 16 and 17). Reaction (17) is supported by the following fact: \cdot Cl₂⁻ reacts with s² chloro complexes, such as Tl(I) ($k_{19} = 5 \times 10^9 \text{ M}^{-1} \text{ s}^{-1}$), ⁴¹ Pb(II) ($k_{19} = 1.9 \times 10^9 \text{ M}^{-1} \text{ s}^{-1}$), ⁴² and Bi(III) ($k_{19} = 9 \times 10^9 \text{ M}^{-1} \text{ s}^{-1}$), ⁴³ to give s¹ complexes (Eq. 19), although these rate constants were measured in hydrochloric acid solutions.

$$\cdot \text{Cl}_2^- + \text{M}^{n+} \longrightarrow 2\text{Cl}^- + \text{M}^{(n+1)+}.$$
 (19)

Conclusions. Upon continuous UV-irradiation of a Sb-(V) in both deaerated solutions of CHCl₃ and CH₃CN, Sb-(V) is reduced easily to Sb(III). On the other hand, although Sb(III) is oxidized to Sb(V) in CHCl₃ in the presence of oxygen, it does not occur in CH₃CN. It was found that Sb-(IV), which has the s¹ electron configuration, was detected as an intermediate in the flash photolysis of Sb(III) or Sb-(V) in both CH₃CN and CHCl₃ solutions. This fact shows that successive one-electron transfer steps are involved in the photoredox reactions of these complexes. Further, from these observations it is suggested that regenerations of the starting complexes prevent an observation of photoactivity in the photolysis of Sb(III) in CH₃CN.

We wish to thank Professor H. Yokoyama and Professor N. Sato for helpful discussions.

References

- 1 a) C. K. Jørgensen, "Oxidation Number and Oxidation States," Springer, Berlin (1969). b) C. K. Jørgensen, "Absorption Spectra and Chemical Bonding in Complexes," Pergamon Press, Oxford (1964).
 - 2 A. Vogler and H. Nikol, Pure Appl. Chem., 64, 1311 (1992).
- 3 G. F. Kirkbright, P. J. Mayne, and T. S. West, J. Chem. Soc., Dalton Trans., 1972, 1918.
- 4 K. Tennakone and U. S. Ketipearachchi, J. Photochem. Photobiol. A: Chem., 55, 297 (1991).
- 5 N. Shinohara, K. Mori, and M. Inoue, Chem. Lett., 1986, 661.
- 6 N. Shinohara and M. Inoue, *Bull. Chem. Soc. Jpn.*, **62**, 730 (1989).
- 7 K. Oldenburg, A. Vogler, I. Mikó, and O. Horváth, *Inorg. Chim. Acta*, 248, 107 (1996).
- 8 A. Vogler and A. Paukner, *Inorg. Chim. Acta*, **163**, 207 (1989).
- 9 B. G. Ershov, M. A. Akinshin, A. V. Gordeev, and N. L. Sukhov, *Radiat. Phys. Chem.*, 27, 91 (1986).
- 10 A. Vogler and A. Paukner, J. Photochem. Photobiol. A: Chem., 46, 227 (1989).
- 11 A. Vogler, C. Quett, A. Paukner, and H. Kunkely, *J. Am. Chem. Soc.*, **108**, 8263 (1986).
- 12 J. Blazejoski and J. Szychlinski, J. Photochem., 10, 451 (1979).
- 13 R. C. Wright and G. S. Laurence, *J. Chem. Soc.*, *Chem. Commun.*, **1972**, 132.

- 14 E. Ephrain and S. Weinberg, *Chem. Ber.*, **42**, 4447 (1909).
- 15 G. Y. Ahlijah and M. Goldstein, J. Chem. Soc. A, 1970, 326.
- 16 H. Nikol and A. Vogler, J. Am. Chem. Soc., 113, 8988 (1991).
- 17 a) K. Oldenburg, A. Vogler, I. Mikó, and O. Horváth, *Inorg. Chim. Acta*, **248**, 107 (1996). b) K. Oldenburg and A. Vogler, *Z. Naturforsh. Teil B*, **48**, 1519 (1993). c) A. Vogler and H. Nikol, *Comments Inorg. Chem.*, **14**, 245 (1993). d) A. Vogler, A. Paukner, and H. Kunkely, *Coord. Chem. Rev.*, **97**, 285 (1990).
- 18 I. P. Bell, M. A. J. Rodgers, and H. D. Burrows, *J. Chem. Soc., Faraday Trans.* 1, **73**, 315 (1977).
- 19 T. Imamura, A. Kishimoto, T. Sumiyoshi, K. Takahashi, T. Fukumoto, and Y. Sasaki, *Bull. Chem. Soc. Jpn.*, **68**, 3371 (1995).
- 20 T. Imamura, T. Sumiyoshi, K. Takehashi, and Y. Sasaki, *J. Phys. Chem.*, **97**, 7786 (1993).
- 21 P. Pringsheim and H. Vogels, *Physica*, **2**, 225 (1940).
- 22 J. F. D'Amico, M. A. De Angelo, J. F. Henrickson, J. T. Kenney, and D. J. Sharp, *J. Ecectrochem. Soc.*, **118**, 1695 (1970).
- 23 W. Brüll and H. Schägel, Z. Anorg. Allg. Chem., 217, 401 (1934).
- 24 In the case that all the Sb(III)* can not be quenched completely by oxygen, \cdot CH₃CN⁻ radicals in Sb(III)-CH₃CN systems and \cdot CCl₃ in Sb(III)-CHCl₃ systems react with oxygen to give O₂⁻ (\cdot CH₃CN⁻ + O₂ \rightarrow CH₃CN+O₂ $k=1.0\times10^{10}\,\mathrm{M}^{-1}\,\mathrm{s}^{-1})^{20.25}$ and CCl₃OO·, respectively. The resulting O₂⁻ and CCl₃OO· radicals react with Sb(III) to give O₂²⁻ and CCl₃OO⁻ respectively. The peroxide, CCl₃OO⁻, is stable for weeks in CHCl₃. The ratio of SbCl₆⁻ to peroxide was reported to be 1.02,8 which can be also explained with the reaction scheme.
- 25 T. H. Tran-Thi, A. M. Koulkes-Pujo, L. Gilles, M. Genies, and J. Sutton, *Radiat. Phys. Chem.*, **15**, 209 (1980).
- 26 S. Gäb and W. V. Turner, Angew. Chem., Int. Ed. Engl., 24, 50 (1985).
 - 27 M. Anbar and J. K. Thomas, J. Phys. Chem., 68, 3829 (1964).
 - 28 M. E. Langmuir and E. Hayon, J. Phys. Chem., 71, 3808

- (1967).
- 29 G. G. Jayson, B. J. Parsons, and A. J. Swallow, *J. Chem. Soc.*, Fraday Trans. 1, **69**, 1597 (1973).
- 30 P. Neta, R. E. Huie, and A. B. Ross, "Rate Constants for Reactions of Inorganic Radicals in Aqueous Solution," National Bureau Standards, Washington, D.C. (1988), p. 1175.
- 31 O. Horváth and A. Vogler, *Inorg. Chim. Acta*, **221**, 79 (1994).
- 32 K. R. Mann, H. B. Gray, and G. S. Hammond, *J. Am. Chem. Soc.*, **99**, 306 (1977).
- 33 C. R. Bock and M. S. Wrighton, *Inorg. Chem.*, **16**, 1309 (1977).
- 34 D. P. Schwendiman and J. I. Zink, *J. Am. Chem. Soc.*, **99**, 306 (1977).
- 35 a) A. Vogler, W. Losse, and H. Kunkely, *J. Chem. Soc.*, *Chem. Commun.*, **1979**, 188. b) A. Vogler and H. Kunkely, *J. Am. Chem. Soc.*, **103**, 1559 (1981). c) A. Vogler and H. Kunkely, *Inorg. Chem.*, **21**, 1172 (1982).
- 36 M. Freiberg and D. Meyerstein, *J. Chem. Soc.*, Faraday Trans. 1, 26, 1825 (1980).
 - 37 P. K. Hoggard, Coord. Chem. Rev., 159, 235 (1997).
- 38 O. Monreal, T. Esmaeili, and P. E. Hoggard, *Inorg. Chim. Acta*, **265**, 279 (1997).
- 39 S. Sathiyabalan and P. E. Hoggard, *Inorg. Chem.*, **34**, 4562 (1995).
- 40 B. Lesigne, L. Giles, and R. J. Woods, *Can. J. Chem.*, **52**, 1135 (1974).
- 41 R. W. Dodson and H. A. Schwarz, *J. Phys. Chem.*, **78**, 892 (1974).
- 42 A. V. Gogolev, I. E. Makarov, and A. K. Pikaev, *High Energy Chem.*, **18**, 336 (1984). Translated from: Khim. Vys. Energ., **18**, 429 (1984).
- 43 B. G. Ershov, M. A. Akinshin, A. V. Gordeev, and N. L. Sukhov, *Radiat. Phys. Chem.*, 27, 91 (1986).